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 where o_ = }‘:—’—Ii (%)1/3
The phase of the FC is defined as the sum of the phases in Eqgs. (16) and (18). The error in the result~
ing formulas does not exceed 1%. These can be used to obtain the spectra and the individual cases of turbu-
lent velocity fluctuations.
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EXPERIMENTAL INVESTIGATION OF SONIC
AND SUPERSONIC ANNULAR JETS

M. A. Koval' and A. I. Shvets UDC 533.695.7

A considerable number of theoretical and experimental reports, which are surveyed in [1, 2], e.g., have
been devoted to the investigation of flow in supersonic annular jets. The influence of the Mach number of the
jet and the expansion ratio on the value of the base pressure has been established experimentally and the
principal modes of flow in annular jets have been determined. Until now, however, the influence of the rela~
tive sizes of annular nozzles and of the profiling of the flow-through part on the flow has been little studied,
in connection with which the present work was performed. Comparisons are made of the expansion ratio of
the escaping jet, the wave structure, and the pressure in the base region.

The flow in three sonic and three supersonic jets escaping from annular nozzles with plane cuts was
investigated experimentally. The subsonic flow channels in the nozzles provided for not less than fivefold
compression of the stream and were profiled in such a way that a uniform stream was assured in the throats
of the supersonic nozzles or at the cuts of the sonic nozzles. In the exit cross sections of the sonic nozzles
the ratio of the inner to the outer diameter was d/D = 0.5, 0.75, and 0.9 (Fig. 1). The supersonic channels
were conical, and the nozzles had the following parameters: d/D = 0.6; u = 15°; = 24°; M, = 2.63; d/D =
0.68; p =10 B = 6°; Mgy = 1.8; d/D = 0.91; p = 10°; g = 10°; Mq = 2.78 (M, is the rated Mach number of
the nozzle).

1. Pressure in Base Region

In order to study the influence of the relative diameter of a nozzle on the relative base pressure p; =
Ppo/ Po, measured at the axis of the nozzle face (the index b is for the base cut, 0 for the nozzle axis, and «
for parameters of the flooded space into which the jet discharges), in Fig. 1 we give the dependence p; = f(n)
for the three sonic jets and one of the supersonic ones (M, = 1: d/D = 0.9 (1, 2), d/D = 0.75 (3,4) d/D =
0.5 (5, 6); M, = 2.63, u = 15°, g = 24°: d/D = 0.6 (7)). Since the expansion ratio of a sonic jet cannot be less
thann = 1 (n = p,/p,, where p, is the pressure at the nozzle cut), the quantity n' = paMfl/ p,, is taken as
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the parameter uniquely characterizing the mode of subsonic flow. Henceforth it is assumed that n = n' when
M, = 1. The pressure curves for the subsonic nozzles and for the supersonic nozzle with M, = 2.63 are sim-
ilar regardless of the ratio d/D. An exception is the dependence p; = f(n) for the supersonic nozzle at small
expansion ratios, i.e., in the mode of flow with separation in the nozzle.

Five characteristic modes having monotonic variation of thepressure are distinguished in the pressure
curve p; = f(n) for a sonic nozzle, which, as will be shown below, is connected with the flow structure in an
annular jet. The boundaries of the sections of the modes, for the sonic nozzle with d/D = 0.9, for example,
are marked in Fig. 1 by the points A, B, C, D, E, and F (A, B, C, D, E, and F are used arbitrarily below to
designate the values of the expansion ratio for the corresponding modes of other nozzles). In section AB the
jet is subsonic everywhere (point B corresponds to n = 1), while for an expansion ratio n > 1 the flow in the
jet is supersonic. The bends in the pressure curve at points C, D, and E establish the boundaries for changes
of the wave structure in the jet. For example, point D corresponds to the start of reorganization in the jet
from an open to a closed base region while point E corresponds to the end of this reorganization, i.e., to com~
pletion of the formation of a sonic throat at the jet axis. We note that the reorganization of the flow in a jet
from an open to a closed base region for sonic jets is not accomplished instantaneously but over the extent of
some section DE. And this range of expansion ratios narrows with 2 decrease in the ratio 4/D (Fig. 2, n =
£(d/D), Dy = Poo/ b, P, is the pressure at the nozzle cut, curve I is the start of the reorganization, and II is
the end of the reorganization). For sonic jets the reorganization of the flow from an open to a closed base re-~
gion always occurs at n = 1. For supersonic annular jets the reorganization of the flow from open to closed
can occur both at n = 1 and at n <1, depending on the Mach number M, and the ratio d/D. An increase in
d/D leads to an increase in the reorganization expansion ratio while an increase in the Mach number of the
jet leads to a decrease in this expansion ratio [2]. In a2 mode of flow with a closed base region the pressure
Pne increases in proportion to the increase in n, i.e., in proportion to the increase in the pressure p a

The pressure over the face of an annular nozzle was measured in the experiment. Profiles of the pres~
sure over the nozzle face at different expansion ratios for the sonic nozzle with d/D = 0.9 are presented in
Fig. 3 (ps= pp/Ppo and T = r/(d/2) is the relative rounding radius of the nozzle face). It is seen that up to
the start of the reorganization of flow in the jet from an open to a closed base region (n < 6.7) the pressure is
constant over the base, but from n 2 6.7 up to an expansion ratio n = 10.6 (the expansion ratio for the end of
reorganization of the base region is ng = 8) the relative pressure over the base decreases toward the inner
edge of the nozzle. Then at n = 10.6 the pressure is equalized over the nozzle base and at n 2 11.2 it hardly
depends on the expansion ratio. For example, tests with n = 12.3, 79, and 97 gave the same pressure distri-
bution as for n = 11.2. Thus, stabilization of the flow in a closed jet sets in at an expansion ratio greater than
the expansion ratio corresponding to the end of a closed base region.
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The proportionality of the pressure variation to the expansion ratio for a closed jet means that in the
case of a mode of flow with a closed base region the ratio p, = ppy/p g for each concrete nozzle is a constant
whose value is mainly determined by the nozzle geometry. For sonic nozzles the ratio p, depends linearly on
d/D and does not depend on n (see Fig. 2, points 1 for p, = £(d/D), line I11). Extending the line III to the
section of d/D = 0-0.5 gives a value of p, ~ 0.7 at d/D = 0, which corresponds approximately to the ratio
Pp/P a (where p, is the pressure at the cylinder near the rim) for a cylinder with a flat rear face when a
sonic stream flows over it longitudinally [2].

In the case of the external problem of flow over bodies the relative base pressure p, decreases with an
increase in the Mach number of the undisturbed stream, with the exception of a narrow section of transonic
velocities where a slight pressure increase is observed, and therefore one can assume that for supersonic
annular jets p, must be less than this value for a sonic jet at the same d/D. Under the experimental condi-
tions, however, the points p, for supersonic jets are located above the curve for a sonic jet (see Fig. 2;
points 2 correspond to M, = 2.63, u = 15°,8 = 24°; 3to My = 1.8, p = 10°, 8= 6°;4 to Mg = 2.78, u = 10°,
B =105 to M, = 1.99, u = 10°, 3 = 10° [3]). This is due to the fact that in the experiment we did not use
Laval nozzles with a uniform velocity field at the cut but conical nozzles with bending of the stream by angles
pand 8. It is known that narrowing the rear ends of streamlined bodies increases the value of the base pres-
sure [2]. In annular nozzles the analog of the bevel of the rear end is the angle of inclination u of the inner
shell to the axis. The angle of inclination B of the outer shell also affects the quantity p,, since the experi-
mental value of p, for a supersonic jet with M, = 2.54, u = 0, and 8 = 8° (4] (see Fig. 2, points 6) is also lo~
cated above the line III for a sonic jet.

2, Stream Structure in Annular Jets

Since the structure of a supersonic annular jet has been adequately studied {1, 2], below principal atten-
tion is paid to the structure of sonic annular jets. It is interesting to establish the connections between the
flow structure in a jet, the base pressure py, and the expansion ratio (see Fig. 1). At subcritical pressures
Poj in the forechamber of the model (n < 1) a subsonic annular jet forms at the nozzle cut; its outer diameter
decreases up to the region of joining of the annular jet into a solid jet at a distance of (1~1.5)D from the
nozzle cut and then it increases again (Fig. 4, diagrams constructed from schlieren photographs of the flow;

1 are shock waves and 2 are boundaries of the jet). The minimum relative diameter H/D of a closed sub~
sonic jet grows with a decrease in d/D: H/D =~ 0.5 for d/D = 0.9, H/D = 0.7-0.8 for d/D = 0.75, and
H/D = 0.91-1 for d/D = 0.5 (the measurements of H correspond to an expansion ratio n' = n = 0.8). With
an increase in the expansion ratio the pressure py decreases monotonically in the mode of flow with a sub=-
sonic velocity. At point B (see Fig. 1) the form of the pressure curve changes somewhat with the presence of
a slight bend, and at n > ng = 1 a system of compression shocks is created in the jet. The formation of the
wave structure is essentially influenced by the relative dimensions of the nozzles, i.e., by d/D. For thin an-
nular jets (d/D = 0.9) within the limits of small expansion ratios the shape of the shock waves is close to the
shape of the shock waves of plane jets with the corresponding expansion ratios. But with a decrease in d/D
the shape of the shock waves begins to be affected by the axial symmetry in addition to the influence of the de~
creased pressure in the base region, as a result of which the shock waves are deflected toward the axis.

It has been observed experimentally that for both supersonic and sonic jets the first two to four cells
formed by the shock waves of the jet are relatively stable. The subsequent cells undergo marked oscillations
accompenied by irregular reorganizations of the Mach waves and regular interactions of the waves at the
nodes. In the region of joining of the jet into a solid jet the shock-wave structure of the jet in schlieren photo-
graphs becomes poorly distinguishable.
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As the point C is approached (see Fig. 1) the largest number of celis occurs in the jet, clearly visible
in the photographs, and the thinner the annular jet (d/D — 1), the larger the number of these cells. At point
C on the pressure curve p; = f(n) a slight bend forms, while the monotonic nature of the pressure curve
changes again at n = n,. In this case the cells, except for the first and second, start to break up, and by the
time an expansion ratic np occurs (see Fig. 1) only the first two cells are clearly distinguished in the jet
(Fig. 4c).

An increase in the expansion ratio n > np is accompanied by intensive reorganization of the wave struc-
ture of the jet and by a strong decrease in the pressure p; (see Fig. 1, section DE). Reorganization of the
flow in the base region from an open to a closed base region occurs in section DE. The transition to an ex~-
pansion ratio ng leads to closing of the base region of an annular jet with sonic and supersonic flow at the
axis. In section DE the hanging wave NK (Fig. 4¢) of the second cell becomes unstable with an increase in the
expansion ratio and is smeared out on the photographs near point N, approaches the axis, and by the time an
expansion ratio ng occurs the wave NK becomes almost plane, forming a kind of Mach disk.

At n > ny the plane wave NK changes into a nearly conical wave which is regularly reflected from the
axis as wave KO (Fig. 4d). Such behavior of wave NK (n > ng), regardless of the expansion ratio, was only
observed for the jet with d/D = 0.9. An almost conical wave did not exist in jets with d/D = 0.75 and 0.5, In
these jets the plane wave NK is reorganized into a bridge-shaped wave NRK with an increase in the expansion
ratio n > np (Fig. 4e).

An increase in the expansion ratio (n > ng) is accompanied by a decrease in the wave NQ until the
points N and Q merge (Fig. 4e), forming a regular wave reflection at the point R (Fig. 4f), while the bridge~
shaped wave RN is considerably removed from the nozzle cut in this case. The wave RC created at the point
R is reflected from the wave QC and again forms ogival and bridge~shaped compression waves DE. Further
downstream the wave structure of the jet is repeated and gradually smeared out, undergoing some oscillations.

The independence of p, from the expansion ratio and the occurrence of shock waves intersecting the
flow axis beyond the base region (Fig. 4d-f) indicate the reorganization of the flow from an open to a closed
base region. In 2 closed jet the inner hanging wave of the first barrel at point F (Fig. 44, e) can curve con~
siderably, depending on the expansion ratio.

However, the position of point F depends mainly on the ratioc d/D (Fig. 5, m/d = f(d/D); points 1 cor-
respond to sonic jets in the mode at point E of Fig. 1). An increase in the expansion ratio n > ng, accom-
panied by a decrease in pressure away from the axis of the face (see Fig. 3), leads to a decrease in the
values of ! and m. The decrease in I and m proceeds until those expansion ratios when the pressure at the
face starts to level out somewhat. The minimum values of ! and m are shown in Fig. 5 (points 2). With a
further increase in the expansion ratio, however, the values of  and m increase again to the initial values
(Fig. 5, points 1) and then no longer depend on the expansion ratio.

Since I and m indirectly reflect the size of the throat of the near wake, determined from the viscous
boundary of the jet, and its position relative to the plane of the nozzle cut, and with allowance for the fact that
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in an unbounded stream the throat of the near wake decreases and approaches the base with an increase in the
Mach number of the undisturbed stream [2], one would expect that ! and m would have smaller values for
supersonic jets than for sonic jets with the same ratio of diameters. However, the values of I and m (Fig. 5,
points 3 and 4, respectively) for supersonic jets (M, = 2.63, u = 15°, g8 = 24°; My = 2.78, u = 10°, g = 10°)
practically coincide with the values of I and m for sonic jets. As is seen, an increase in the angle u pro-
motes not only an increase in the pressure pp, but also an increase in the relative sizes [ and m.

The movement of the point F on the inner hanging wave of the first cell (Fig. 4d, e), shown in Fig. 5 by
the functions of I/d and m/d on d/D, qualitatively reflects the variation in the size of the throat of the near
wake and of its location relative to the nozzle cut. Consequently, the ratios of the diameter of the wake throat
and of its distance from the nozzle cut to the diameter of the inner shell of the nozzle grow with a decrease
in d/D. An increase in the angle u also leads to an increase in these parameters of the throat of the near
wake.

3. On Hysteresis in Annular Nozzles

It is known that in annular jets the transitional modes of flow from an open to a closed base region and
vice versa are accompanied by hysteresis phenomena [2, 4]. Hysteresis was not detected for the sonic jets
in the investigated range of d/D. In Fig. 1 the values of p; are indicated for sonic jets (points 1, 3, 5 corre-
spond to d/D = 0.9, 0.75, 0.5), obtained during an increase in the expansion ratio n and (points 2, 4, 6) dur-
ing a decrease in n.

Consequently, hysteresis phenomena occur only for supersonic jets. Even in supersonic jets hysteresis
phenomena do not always appear, however. For example, hysteresis is practically absent for the supersonic
jet with Mg = 2.63, d/D = 0.6, p = 15°, and 8 = 24°, judging from the oscillogram (Fig. 6, curve I). But for
the jet with My = 2.78, d/D = 0.91, u = 10°, and 8 = 10° (Fig. 6, curve II) hysteresis occupies a considerable
range of expansion ratios. If we construct the ratio é = (ng — np)/ng, then for sonic jets 6 = 0.22-0.25 (6
grows somewhat with an increase in d/D), 6= 0.36 for a jet with M, = 2.63, and 6= 0.1 for M; = 2.78. In
comparing the values of ¢ for these jets we see that hysteresis is observed at small values of 4. Since a
change in d/D has little effect on & (e.g., for sonic jets with d/D = 0.5-0.9, 6 = 0.22~0.25), a2 comparison of
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the flow in jets with close Mach numbers My = 2.63 and 2.78 and with different nozzle geometries shows that
with an increase in the angle y (see Fig. 1), i.e., with an increase in &, the hysteresis phenomena decrease
and disappear. Conversely, a decrease in the angle y promotes the development of hysteresis. For example,
for a jet with M, = 2.54,d/D = 0.753, u = 0, and g = 8° [4] (Fig. 6; points 1 correspond to an increase in n,
and points 2 to a decrease in n) the hysteresis zone has the maximum range of expansion ratios. Thus,
hysteresis phenomena in supersonic jets essentially depend on the Mach number and the profiling of the
nozzles.
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AERODYNAMIC FORCES ACTING ON THE BLADES
OF A THREE-DIMENSIONAL ANNULAR ARRAY
WITH NONSTEADY FLOW

V. P. Ryabchenko UDC 532.5:621.22

We present a computer realization of the solution of the three-dimensional problem of the nonsteady
flow over the vane crown of an axial turbine by an irrotfational stream of an ideal incompressible fluid, based
on the vortex theory of a screw [1] and of a wing of finite span [2].

To solve this problem in [3, 4] the geomefry of a blade crown was modeled by a straight three-dimen-
sional array of plates enclosed between two planes, while in {5, 6] it was modeled by an annular array of
vanes consisting of parts of helical surfaces. In the present report we adopt the second model, which evi-
dently better describes the geometry of an actual turbine.

Because of the complexity of the algorithm suggested in [4-6], there are only individual examples of the
calculation of nonsteady aerodynamic characteristics. Below, on the basis of a simple algorithm which is a
generalization of the working method of [7] for an established flow, we analyze the influence of the three-
dimensionality of the flow on the nonsteady aerodynamic forces acting on the vanes of a round array in a
wide range of variation of the parameters of the array.

1. Let us consider a uniform stream of an ideal incompressible fluid with an axial velocity v through
one array of vanes which are rotating with a constant angular velecity w in a coaxial cylindrical channel
which is infinite in the axial direction. We assume that the vanes can undergo synchronous, steady, harmonic
vibrations of low amplitude at a frequency w; and a constant phase shift ur (4 = 20/ N, where ¢ = 0, =1,
£2,...; N is the number of vanes in the array).

We introduce cartesian (%,y, z) and cylindrical (x, r*, 6%} coordinate systems connected with the ro~
tating vane array. The x axis is directed along the axis of rotation while the y and z axes are drawn in the
plane perpendicular to it. The r* and 6* coordinates are connected with y and z by the usual equations,

y = r¥cos 6* and z = r*sin §*, where the angle 6* is reckoned in the positive direction from the y axis
(Fig. 1).

We assume that the vanes Z , (n=0,... , N~ 1) are infinitely thin and in the central position they con~
sist of parts of helical surfaces bounded in the (r*, 6*) plane by a rectangle {r{ =r* =1y, op =~ < 0% <
an+ ¥} Here ap = 2my/N; n is the number of vanes; r; and r, are the radii of the inner and outer cylin-
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